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SUMMARY

A complete and exact solution for the problem of an incident P wave scattered by
an elastic spherical inclusion is presented and described. The solution can be
obtained from either analytical formulae or stable numerical procedures. A method
of estimating the number of terms that must be retained in the harmonic series in
order to achieve a specified accuracy is given. The results are investigated by
calculating synthetic seismograms, scattering diagrams, and scattering cross-sections
for a broad frequency band and for both low-velocity and high-velocity inclusions.
The fields within the shadow zone are formed primarily from three different types of
waves, P waves transmitted through the sphere, P waves diffracted around the
sphere, and S waves converted at the boundary of the sphere. The relative
contribution from these different waves depends upon the distance of the observa-
tion point from the sphere.
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1 INTRODUCTION

The fact that the earth is not a homogeneous body has forced seismologists to consider scattered waves in their attempts to
explain some of the features they observe on seismograms. Elastic wave scattering has been called upon to explain a variety of
different phenomena which are routinely observed. These include the phase and amplitude fluctuations of waves arriving at a
seismic array (Aki 1973), the precursors to PKIKP (Haddon & Cleary 1974), and the codas of local earthquakes (Aki 1969). In
addition, the attenuation of seismic waves is usually interpreted as being a combination of intrinsic absorption and scattering
(AKki 1980).

The general problem of scattering of elastic waves by a heterogeneity within the earth is a difficult one and analytical
solutions are known for only a few special cases, and even in these instances the solutions are complicated and laborious to
calculate. Thus, most attempts at interpreting scattered seismic waves have relied upon approximate treatments of the
scattering theory. A number of approximations are possible and are related to such parameters as the size of the scatterer, the
shape of the scatterer, the distance of the observation point from the scatterer, the magnitude of the heterogeneity, and the
number of times the wave has been scattered. Assessing the validity of these approximations is not a simple matter and has
been addressed for only some of the approximations (for example, Hudson & Heritage 1981). The matter is further
complicated by the fact that more than one approximation may be involved in the same problem, and it is not always obvious
that the different approximations are consistent.

The best method of checking the validity of the approximations which are made in scattering problems is to compare them
with exact analytical solutions. In this paper we develop and discuss the properties of one such solution, the scattering of a
plane P wave by a spherical inclusion. The method of obtaining the analytical solution is outlined, the numerical methods used
in calculating the solution are described, and some of the important features of the solution are described and discussed. The
results contained in this paper are the starting point for a companion paper (Korneev & Johnson 1993), which makes detailed
comparisons between various approximations and the exact solution.

In setting up the theoretical problem for elastic wave scattering, one must choose a model which is complicated enough so
that it resembles situations found in the earth and at the same time simple enough to allow tractable solutions of the
mathematical equations. We have chosen to model a local heterogeneity as a homogeneous elastic sphere surrounded by a
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homogeneous elastic medium. The elastic constants and density of the spherical inclusion can be arbitrarily different from those
of the surrounding medium. The sphere can also be filled with a fluid. The sphere is one of the few objects for which the
scattering problem can be solved exactly. It also has the desirable property of being describable by a minimum number of
parameters, which makes the interpretation of the analytical and numerical results relatively simple. Furthermore, scattering by
a sphere represents a canonical problem for a more extended class of objects with relatively simple and smooth boundaries, and
thus the results presented in this paper contribute to the general understanding of scattering from this class of heterogeneities.

2 THEORY

The analytical treatment of elastic wave scattering by a spherical inclusion has a long and rich history, dating back to the
classical papers by Clebsch (1863) and Rayleigh (1871). Much of the earlier work was restricted to scalar (acoustic) waves,
hollow inclusions, or rigid inclusions. There were also theoretical developments in the scattering of light waves, and a good
summary of this work and the relevant references can be found in the book by Van der Hulst (1957). Considerable progress has
been made in the use of asymptotic expansions which are appropriate at high frequencies, with the references in this area
including Scholte (1956), Nussenzveig (1965, 1969), Ludwig (1970), Uberall (1973), and Aki & Richards (1980). Much of the
more recent work on the scattering of elastic waves by a spherical inclusion has been associated with the names of G. 1.
Petrashen in the USSR and R. Truell in the USA. As early as 1944 Petrashen was studying the scattering problem for an
incident P wave, where he made use of a natural spherical vector system which he had developed earlier for the purposes of
quantum mechanical problems. The later studies by Petrashen and his students were concerned mostly with obtaining
asymptotic representations for different kinds of regular and diffracted waves formed by a sphere (Petrashen 1950; Buldyrev &
Molotkov 1958), such as head interference waves for the scalar case (Buldyrev & Molotkov 1960), failure waves for the scalar
case (Buldyrev1964), surface waves on an isolated elastic sphere (Gelchinskij 1958), and complete solutions for an elastic
sphere (Korneev 1983; Korneev & Petrashen 1987). Related work includes the theoretical and experimental studies of acoustic
waves incident upon an elastic sphere by Nigul er al. (1974). Independently, Truell and his coworkers (Ying & Truell 1956;
Einspruch, Witterholt & Truell 1960; Truell, Elbaum & Chick 1969) also made important contributions to the solution of this
problem. Extensions and applications of this general approach can also be found in Yamakawa (1962). The basic equations that
are obtained when displacement potentials are used along with summaries of some of the work mentioned above can be found
in such books as Morse & Feshbach (1953) and Pao & Mow (1973).

The basic method followed in the above papers is to write the solutions inside and outside the inclusion in terms of
appropriate eigenfunctions of the differential equations and then couple these solutions by matching the boundary conditions
on the surface of the inclusion. It is also possible to formulate this problem as an integral equation by making use of the
elastodynamic Green function for a homogeneous medium. Further information on this approach can be found in Miles (1960),
Haddon & Cleary (1974), Varatharajulu & Pao (1976), Waterman (1976), Hudson (1977), Gubernatis, Domany & Krumbhansl
(1977a) and Gubernatis et al. (1977b).

In this section we outline a method of obtaining the general solution for the scattering of a plane P wave by a spherical
inclusion. Although a solution to this problem can be found in several of the papers listed in the previous paragraphs, we
repeat it here for completeness and also to introduce a set of spherical basis vectors which are used in our solution but are not
common in the English literature. These basis vectors were developed by Petrashen and have properties which are convenient
for solving vector function problems with spherical symmetry.

Consider the configuration shown in Fig. 1. Joint Cartesian {x, y, z} and spherical {r, 8, ¢} coordinate systems will be used.
Centred about the common origin of these coordinate systems is a sphere of radius r = R. The volume within this sphere will be
denoted by the index v =1, while the volume outside will be denoted by v =2. The materials inside and outside the sphere will
in general be different, and the properties of these materials are completely described by the Lame parameters and density

A, = constant, ., = constant, p, = constant, (v=1,2). 2.1)
Incident from medium v =2 is a harmonic disturbance with a displacement field given by
U, = Uy(x, y, 2)e'". (2.2)

The interaction of this incident wave with the sphere gives rise to additional displacement fields both inside and outside the
sphere, and these are denoted by

U,=U,(x,y, 2", (v=1,2). (2.3)

These additional disturbances will be referred to as the scattered fields. Associated with each field is a stress tensor. We will
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Figure 1. The geometry of the problem. The sphere of radius R has material properties denoted by v =1, while the material properties of the
surrounding medium are denoted by v =2. A plane P wave is incident from along the negative z axis. The transmitted wave field is observed as
a function of the x coordinate along a line that is offset a distance z from the centre of the sphere.

only need the traction on spherical surfaces and this is given by

(v) ~ (?Uv a

£VU)=AV-Uf+ 2,uv—(9 +u, [FxVXU,] 2.4)
r

where £ =r/r is the unit radius vector. We also denote the velocities and slowness of both compressional and shear waves by

A, 201, _ v _
VO = ([P rma v = [Br=pT 25)
Py Pv

The incident field of eq. (2.2) and the scattered fields of eq. (2.3) must all satisfy the elastodynamic equations of motion in
mediums v =1, 2,

(A, +2u,)V?U, ~ n, VXV XU, +p,w?U,=0. (2.6

Taken together the fields must satisfy the boundary conditions on the surface of the sphere, which are that the displacement
and traction should be continuous. Thus we require that

U,=U,+U, and tV[U,]=t2[U,+U,) 7

where all of these equations are evaluated at r = R. We also require that the scattered fields remain finite within the sphere and
satisfy a radiation condition at large distances from the sphere

— c(e’ ¢) —ikr
m—C
r

U, , o) (2.8)
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where k = w/V? or k = w/V?. This is a well-posed problem in that, given the incident wave, the boundary conditions are
sufficient to solve for the scattered fields and thus arrive at a unique solution to the problem.

Now let us consider the special case of an incident wave which is a plane harmonic P (compressional) wave propagating in
the direction of the positive z axis. In this case we have

Uy = e "iwetg (2.9)

where 7 is a unit vector in the z direction. We construct the solutions by introducing the system of spherical vectors developed
by Petrashen (1945, 1949)

Y0, =Y05.(6, ) =1 X VY,,(6, $)

Y. =Y,(6, ¢) =+ 1)iY,,(6, $) —r VY,,(6, d) (2.10)
Yin=Y,.(0, $) =Y, (6, $) +r VY,.(6, ¢)

with the usual definitions for the spherical harmonic functions

Y,.(6, ) =e"*P(cos 8), (=0, (-l=m=l).

This system, whose main features are outlined in Appendix A, leads to particularly simple equations in this problem of

spherical symmetry. Using the system of eq. (2.10), an arbitrary vector function U can be represented in the form

U= 2 0o, 0 )Y+ 0,1V ) (2.11)
1=0,|m|=!

where the ¢,,.(r) are unspecified radial functions at this point.
The particular incident wave of eq. (2.9) has the representation

Uo= 2 {irni(0aon)Y o = i (waar)Yoh exp {=ilm/2(1 + )]} (212)
=0

where the j, (x) are spherical Bessel functions. The displacement fields of the scattered waves U, and U, from eq. (2.3) can also

be represented in terms of a series of the spherical vectors of eq. (2.10). Making use of the structure of the series in eq. (2.12)

for the incident wave and the orthogonal properties of the spherical vectors (see Appendix A), it is possible to show that U,

and U, can be expressed as

U= E {[a;”jl+l(walr) + lbgl)jl+l(wﬁlr)]YX)

=0

+{=af,(wa,r) + (1 + DbV, (@B )] Yt exp {—i[m/2( + 1)} (2.13)
U,= g {[a®h,, \(wayr) + bPh, . (0B, Y

+[=a®h,_(wayr) + (I + 1)bPh, (B, Y ek exp {—i[m/2(1 + 1)]} (2.14)

where a{* and b{" are now unknown scalars and the k,(x) are spherical Hankel functions of the second kind. Note that the
spherical Bessel functions j,(x) of eq. (2.13) are finite throughout the inclusion and the spherical Hankel functions A, (x) of eq.
(2.14) have asymptotic representations for a large argument that satisfy the condition in eq. (2.8). Also note that with the basis
vectors being used here, the displacements in egs (2.13) and (2.14) separate into compressional and shear fields, so that either
equation can be put in the form

U, =2 +U, (2.15)

with the af*’ associated with the P field U% and the b$” associated with the S field U, and with the following conditions
satisfied

VxUr=0, V-U =0. (2.16)

To determinate the coefficients a{*’ and b{*’ in eqs (2.13) and (2.14) we have to satisfy the boundary conditions of eq.
(2.7). Making the necessary substitutions, evaluating the expressions for r = R, and using the orthogonal properties of the
spherical vectors, one arrives at a separate set of linear equations for each value of /. When / =0 one can take advantage of the
fact that Yy, =0 to get the abbreviated set of equations

W"[a(()l)] N [jl(§2)] 2.17)

a E)z) 0,
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where
W, = []1(51)_h1~(§2)] (2.18)
k0, — 0,
[ & . .
0,= 7| St - 46 |
~ _Y2[§
0= 22| £ (6 - m, (60 |
& Lys
£, = a,wR, n, = B,wR (2.19)
oy, _PiB2
Yo =—, K= .
B. P28,
When /=1 a full set of four equations with four unknowns is obtained of the form
W,F,=F (2.20)
where F, and F, are the column matrices
F=[af", b{", af®, b]" (2.21)
and
Fi=ljin(&), i), €3, C51" (2.22)
and the matrix W, is given by
Jie1(€1) Grei(my) —h;1(€2) —th; i 1(n2)
W, = ~Ji- 1(+§1) (+ 1)]./11(711) h/—ljiz) -+ 1)?1;1(”)2) 2.23)
xC} xID| -C; —iD,
kCy —k(l+1)Dy -C; (+1)D;

The following notations are used here

e b At

FE [ of )]

R AN Ml
S e AGRR Pl

It can be shown that the determinants of the matrices in egs (2.18) and (2.23) are always different from zero, so in
principle it is always possible to solve the systems of eqs (2.17) and (2.20) for the unknown coefficients a$” and b{* for any 1
However, because of the asymptotic properties of the matrix elements, numerical difficulties can be encountered when solving
these systems of equations. This will be discussed in the next section.

Finally, note that the coefficients a{* and b{"’ for any [ are completely defined by the member of the series in eq. (2.12) for
the incident wave with the same /. That is, there is no coupling between harmonics associated with different values of I This
means that a scattering problem for the sphere with an incident wave represented by any member of eq. (2.12) with index !
could be considered, and the results would be the corresponding members of eqs (2.17) and (2.20) with the same index /. To
illustrate this point we will show how the solution for an incident wave generated by a point pressure source can be obtained by
a slight modification of the solution for the plane wave source developed above. Consider a point pressure source located at the
point R, = (Z,, 0, 0) where Z,> R. This will generate a displacement field U, of a spherical P wave

e —ikplr— R

U, = —VT:R—I = —ik,z,lz Vi1 (k) Yoo = i1 (k1) Y ok, Z o). (2.24)
0! =0

Each member of the series in eq. (2.24) differs from that in eq. (2.12) by the coefficient

¢ = —ikpe P Vln (k7).

Thus the solution for the point pressure source is simply obtained by multiplying the members of egs (2.13) and (2.14) by c,.
The egs (2.17) and (2.20) are unchanged.
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3 NUMERICAL CONSIDERATIONS

To calculate the scattered fields U, and U, using the series in eqs (2.13) and (2.14) we have to solve the linear systems of eqs
(2.17) and (2.20) for all ! =0. These systems of equations are generally solved by numerical methods, which means that the
numerical stability of the calculations are a concern. The coefficients of the matrices W, in these systems include spherical
Bessel and Hankel functions, whose features for / >> 1 are characterized by the formulae

1 1

i(z) =~ cos [z —[=/2(l+1)], h(z)~= Ze*'{r["m'“)” G.1
if z >/, and
) 1 2y>—([+1/2) l (2y>l+1/2

| hiz)~—= = 32
Ji(z) 22\/; ( e , A2) Z\/; e (32)
if z <<, where

I+3
o

Because of different ratios between / and the arguments &, &,, %, and 17, of the functions j, and #, that appear in eq. (2.23), the
orders of the different columns of this matrix can became quite different. In particular, for the case / — o the coefficients in the
two first columns go to zero while the other coefficients go to infinity. In such a situation numerical calculations on a computer
can become unstable before achieving the necessary accuracy.

To avoid this situation, we redefine the unknown variables a$*, b{* as new ones x!*’, y{“with the formulae

af’ =h(g)x(”, bV =h(n)yi"

a=h; (&)X, b =h, (). G
Now, if we let the unknown column matrix be

X, =[xy 1, y®1" (34
the system of eq. (2.20) will be

WX, =F (3.5)

where the column matrix F, is the same as in eq. (2.22), and W, can be obtained from eq. (2.23) by multiplying its columns by
h(&), hdn,), k7 '(E), ;7 (n,), Tespectively. Now the coefficients of the matrix W, have values of approximately the same
order (they differ from each other no more than by a coefficient of order /) and the numerical difficulty mentioned above is
avoided.

The change in variable given by eq. (3.3) is also helpful in solving another numerical problem, that of determining how
much of the infinite series in eqs (2.13) and (2.14) must be retained in order to achieve a given accuracy. Note that the
unknown coefficients now are of the same order as the members of F,

X~y ~ (&) (3.6a)
and for / > £, we obtain the estimate
1 N + 19+ 172 1
PO PR [ - _2] ~ -~ 3.6b
S eR ! T T (0
where
b="Een e 37

is taken to be sufficiently large (/,>>1). Thus, the coefficients x{*’ and y{*’ go to zero exponentially when ! =e¢,/2 + N and
24 p y

N — =, Using the following relations obtained from eq. (3.3)

. . r
agl)jlil(walr) :x51)h1(§1)]1¢1(§1 _>

R
(r<R)
) . r
b;”jl:tl(wBlr) =,V§l)h1(771)]111(771 ﬁ)
r
a§2)h[il(wa2r) = x;z)h1i1<§2 E)/hl(gz)
(r>R)

’
b52)hlil(w32r) = ySZ)hlil(nl E)/h/(ﬂz)
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and the ‘limited’ character of the values

ma(e2) /o)

it is clear that the series in egs (2.13) and (2.14) converge at a rate that is equal to or greater than the series in eq. (2.12).
Therefore, if we take the first /, members of the series, with /, specified by eq. (3.7), the absolute error of the calculations will
not be greater than a value of order e~". When any of the arguments £,, 7, is no more than &,, the error in the respective
series decreases with increasing r as (r/R)* in medium v=1 (r <R) and as (R/r)" in medium v=2 (r > R). Thus, given an
error tolerance for the calculations of the fields U,(r, ), we can estimate a number /, for any frequency w and sum the series in
eqs (2.13) and (2.14) for I =1, Test calculations showed that N =15 in eq. (3.7) is sufficient to give an accuracy of 107% or
better.

As mentioned at the beginning of this section, the system of eqs (2.20), or equivalently (3.5), are generally solved by
numerical methods. However, analytical solutions of these systems are possible, although laborious, requiring the equivalent of
inverting a matrix of rank four. This has been done and the results are given in Appendix B. Having two different solutions of
the same basic equations is quite useful in checking the stability and accuracy of both solutions. Thus the analytical solutions of
Appendix B were used to check the solutions that were obtained by numerically solving eq. (3.5). This comparison showed that
for I, given by eq. (3.7) with N =15 the numerical solution of eq. (3.5) is stable and gives the same result as the analytical
solutions. For N > 15 (accuracies better than 10™®) the calculations revealed that the analytical solution gave more accurate
results. It should be mentioned here that all of the calculations discussed in this paper were done with double precision
arithmetic.

There is another way of estimating the accuracy of the calculations without considering the properties of the coefficients g,
and b, This approach takes advantage of the observation made earlier that there is no coupling between harmonics associated
with different values of /. Thus one considers the expression for the incident wave in eq. (2.12) evaluated on the surface of the
sphere (r = R) and truncates the series at a value of / that gives the desired accuracy in representing the incident wave. Then
the @, and b, summed up to this same value of / can be considered as either the exact solution to the truncated version of the
incident wave or as the approximate solution to the analytical version of the incident wave having the desired accuracy.

n(i( %)

4 SCATTERING CROSS-SECTIONS

A useful method of characterizing scattering by an object is to calculate the energy of the scattered waves and compare it to the
energy of the incident wave. Various forms of this ratio between the scattered and incident energies are called scattering
cross-sections. The energy of the scattered waves can be obtained by calculating the energy flux of scattered waves through a
surface S that completely surrounds the object. Noting that the energy flux per unit time through a surface element ds having a
normal n is given by (U-1,[U]) and that the energy flux averaged over one period is @ $» (U - tX[U])/2, then the total energy
flux per period through the surface § is given by

F=§)ﬂmL(U-t:',‘[U])ds (4.1)

where (*) means the complex conjugate. The same reasoning applied to the incident P wave yields an energy flux per unit area
of the wavefront of w?a,(A, + 2,)/2.

Now we follow Truell e al. (1969) and define a normalized cross-section as the ratio of the flow of total energy carried
outward by the scattered waves to the rate of flow in the incident wave through a normal area equal to the cross-sectional area
of the object (geometric shadow of the object). In our case we let § be a spherical surface of radius 7, with r,> R and the
normalized cross-section is given by

g J‘ b ds
Tp = Frm - T
o i rero @0 (Ay + 2#2)”R2

where @ can be calculated by using either of the formulae

¢ = (U, - t[U,)) (4.2a)
or
P=-(U,: t:g[UoD —(Up- tf[Uzl)- (4.2b)

The second expression for @ is easily obtained from the fact that the scatterer generates no additional energy, which leads to
the conditions which for both the incident wave U, and the total field U, + U, there is zero net energy flux across the surface §
so long as it is entirely contained in medium v =2.

Using eq. (2.4) for the traction vector, the series in eqs (2.12) and (2.14) for U, and U, and orthogonal properties of the
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spherical vectors, we can obtain two different expressions for oy,

< (2)2 2)12
wu=43 @+ O[] s 1y 2| (4.39)
1=0 & ™
or
= Ry at®
oy=—-45 @1+ 1) ot (4.3b)
=0 &

This result together with the earlier noted fact that the coefficients for different values of [ are not coupled means that we must
have

PP+ 10+ )93 PR =~ 0 @9

for any value of /. This relationship is useful in verifying numerical calculations.

The function o, from eq. (4.3) is closely connected with the value of the field U,(r, 8) of scattered waves that is observed
along the positive z axis for large r (r » 22V, /w). Using asymptotic expressions for the spherical Hankel functions in eq. (2.14)
we obtain

ei,fz(r/m 1
Uy(r, 0) = iz : R (2 + 1)a;2>[1 + 0<*>]
p

2 =0

e i2r/R) 1
2 o) @)

il

where
R
Ag=i— 2 (21 + a®.
§2 {=0
Comparing eq. (4.5) with (4.3b) we have
4 Fm{Ay} (4.6)
R¢,

which is analogous to an optical theorem for elastodynamics. This expression in eq. (4.6) is a useful relationship between the
amplitude of the forward-scattered field and the total energy scattered in all directions by the obstacle.

Oy =—

5 NUMERICAL RESULTS

One of the primary purposes of this investigation was to gain an understanding of the features of waves scattered by a local
spherical heterogeneity. This problem can be studied with approximate methods, such as ray theory, but it is not always clear if
the information provided about amplitudes and waveforms is accurate. With the results presented earlier in this paper, it is
possible to calculate these scattered waves with the assurance that the results are complete and accurate. Unfortunately, the
results such as eqs (2.13) and (2.14) are not very revealing in the form of an analytical series and must first be converted to
some graphical form, such as synthetic seismograms or scattering cross-sections, before the physical properties of the scattered
waves become apparent.

We are interested in knowing what types of waves are scattered by a sphere and particularly interested in understanding
where the scattered waves with the largest amplitudes can be found in the region surrounding the sphere. It is possible to argue
that the main features of such waves that are scattered by a sphere will be approximately the same for a wide class of smoothly
shaped 3-D heterogeneities, and this broadens the utility of the results presented in this paper for providing insight into realistic
seismological problems.

First consider the matter of what types of waves are scattered by the sphere and their relative amplitudes. These effects are
best observed in the time domain, which requires that the frequency domain solutions obtained in this paper be transformed to
the time domain. This was done by applying a numerical Fourier transform to the solutions and by assuming a broad-band
pulse as the form of the input wave. This source pulse had constant amplitudes in the frequency band between 0.00 and 64.0 Hz
with a sampling interval of 0.25 Hz, which means that the pulse contained wavelengths that ranged from more than one order
of magnitude smaller than the radius of the sphere to more than an order of magnitude larger. Synthetic seismograms were
calculated for the positions that are shown in Fig. 1, which lie on a line offset a distance z from the centre of the sphere in the
direction of forward scattering and extending from the centre of the shadow into the fully illuminated zone. Because of the
symmetry of the problem, there are only two non-zero components to the solutions, U, = U,(x, 0, z, f) and U_ = U_(x, 0, z, 1).

The solutions presented in this paper can be calculated for arbitrary elastic properties inside and outside the sphere,
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including the case of a fluid inside the sphere. Here we present results for two models, one representing a low-velocity scatterer
and the other representing a high-velocity scatterer. The elastic parameters for these two models are as follows:

model 1~ V{"=45kms™', V{’=26kms™', p,=23gmem’
V@ =60kms™', V&=35kms™', p,=27gmem "’
model 2 V{’=75kms™', V{’=44kms™', p,=3lgmem”’
VP =60kms™', V®=35kms™', p,=27gmem”’

Note that there is only one physical dimension in this problem, the radius of the sphere R. Thus all of the other parameters in
the problem can be scaled with respect to this parameter, which is given a value of unity in the results that follow. The
velocities and frequencies scale with R in the sense that the results are invariant so long as the expressions of eq. (2.19) and the
ratio r/R remain constant.

Synthetic seismograms are shown for three different values of the offset distance from the sphere z in Figs 2, 3, and 4. The
results for the low-velocity scatterer (model 1) are shown in the upper parts of these figures and those for a high-velocity
scatterer (model 2) are shown in the lower parts. In all of these figures a distance of 1 km along the x axis represents the edge
of the geometrical shadow, since the value R =1 km was used for the radius of the sphere.

It is useful to associate geometrical ray paths with the primary features of the synthetic seismograms. Within the forward
shadow there are three main types of scattered waves. These are (see Fig. 1): (1) a compressional refracted wave P, P, P, that
goes through the sphere. (2) A shear refracted wave that goes through the sphere as P, P, S, for a low-velocity sphere and as

3.0
25 F
2.0 -
3
:'i + 4 P'ZS‘S?' P’ZS\57'
$411 ! 3
1.0'_ <"1W‘ "’,,”’_.r
PoP P2 I V14l
PP S, <<{11) PoP Sodudein>r £ ¢ 143343997
*F suriii e
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10 0.0 0.5 1.0 1.9 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
25+
2.0 +
Q
215+
1.0
P2S]S2 L 3 P2SIS2 2 ~
LM T
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Figure 2. Transmitted wavefields as a function of distance x from the centre of the sphere along a line that has an offset distance z of 2 km from
the centre of a sphere having a radius R =1km (see Fig. 1 for geometry). The panels on the left are for the z components of motion and the
panels on the right are for the x components of motion. The top two panels are for model 1 of a low-velocity inclusion, and the bottom two
panels are for model 2 of a high-velocity inclusion. The distance x =1 corresponds to the edge of the geometrical shadow.
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Figure 3. Similar to Fig. 2 except that the offset distance z is 4 km.

P,S, S, for a high-velocity sphere. (3) A compressional diffracted wave P,P,P, that goes around the surface of the sphere. The
relative contributions of these different waves to the total seismogram depends upon the offset distance z from the centre of the
sphere.

For near-offset distances z =2R (Fig.2), the wave P,P P, dominates the first arrivals within the shadow on the z
component. For a low-velocity sphere (model 1) it has a reversed polarity and arrives after the wave diffracted around the
outside of the sphere. Note that there is a strong focusing along the axis for the low-velocity sphere but not the high-velocity
sphere. The diffracted wave P,P,P, has a smaller amplitude within the deep shadow at this offset distance. This low-frequency
wave loses amplitude exponentially along its ray path around the sphere and is delayed in time with respect to the undisturbed
incident wave. The shear waves PP, S, (low-velocity case) and P,S,S, (high-velocity case) are strong on the x component and
have a compound wave structure, involving a caustic and two diffracted waves. The caustic is due to the fact that the sphere is a
low-velocity zone for both of these waves, and extending beyond this caustic are low-frequency diffracted waves that attenuate
rapidly with distance. For the low-velocity sphere this diffraction from the caustic begins to interfere with the P, P, P, wave at
this offset distance. Behind this caustic and its diffraction is the wave that has been refracted through the opposite side of the
sphere and thus arrives at a later time. Along this branch of the wave there is a transition from a geometrical ray arrival to a
diffracted wave that continues on to greater distances, although the point of this transition is not obvious on the seismograms.
Note that, because of focusing effects and near-field terms that are important at this offset distance, these waves have significant
amplitudes on the z component of motion near the centre of the shadow. In fact, at x =0, we have the unusual situation of an S
wave that appears only on the z component.
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For medium offset distances z =4R (Fig.3), all three of the waves P,P,P,, P,P,P,, and P,S,S, have comparable
amplitudes. The waves P, P, P, and P,P,P, arrive closely in time and interfere with each other. The P,P,S, and P,S,S, waves are
now separated in time from the other phases and their compound nature is clearly evident.

For the larger offset distances z = 8R (Fig. 4), the wave P,P,P, is dominant on the z components, as the shadow is not
nearly so deep as at the smaller offset distances. The wave P,P,P, which has passed through the sphere is relatively small
compared to the wave which has diffracted around it. On the x components the waves P, P, S, and P,S, S, are the dominant
arrivals and still display their compound waveforms. It is worth commenting on the reason why the P,P,§, wave is the
dominant shear wave arrival for the low-velocity case, while P,S,S, is dominant for the high-velocity case. These are the S
waves that see the smallest change in material properties upon both entering and leaving the sphere, and thus the amount of
energy lost to reflection and also the amount of strong focusing is minimized. In contrast, the wave P,S;S, for the low-velocity
case encounters a large change in velocity upon entering the sphere, which leads to more energy lost to reflected waves and
also causes focusing so strong that the focal point lies within the sphere. Likewise, the wave PP, S, for the high-velocity case
encounters a large change in velocity upon leaving the sphere.

It should be emphasized that, regardless of the distance from the scatterer, there is a significant amount of motion on the x
component. Recall that the displacement on this component would be zero if the sphere were not present, so we see that
scattering is an effective means of transferring motion from one component of motion to an orthogonal component in the
direction of forward propagation. At the larger offset distances and for both the low-velocity case and the high-velocity case,
the shear waves are the dominant contributor to the x-component seismograms.

A slightly different presentation of some of the data from Figs 2, 3 and 4 is shown in Fig. 5. Here the seismograms for the z
component at the centre of the shadow are shown as a function of the offset distance z. They show quite clearly how the
dominant wave type in the shadow changes from P,P, P, at small z to P,P,P, at large 7 for the cases of both the low-velocity
inclusion and the high-velocity inclusion. Note that for the low-velocity inclusion the P, P, P, wave is the first arrival, whereas
for the high-velocity sphere it is the P,P, P, wave that arrives first. This figure also illustrates how the low-velocity sphere is
much effective in focusing energy into the shadow than is the high-velocity sphere.

These results show that, depending upon the distance of the observation point from the scattering object, the dominant
part of the seismic field in the shadow zone may be composed of waves having a fundamentally different nature. Moreover, in
the case of low frequencies it may be difficult to separate these different waves from each other on the basis of traveltimes. It
would appear that results of this type would be applicable to various types of seismic tomographic methods. For instance, the
results in Fig. 5 show quite clearly that at observation points distant from the inclusion more than a few times its dimension, the
dominant wave has been diffracted around the obstacle rather than passing through it, which differs from the common
assumption made in seismic transmission tomography. Because of this, the traveltime anomaly will decrease with distance from
the inclusion. Obviously, when solving inverse problems to obtain estimates of the properties of the scattering object, it is
important to have a proper understanding of what types of waves are dominating the seismograms in order that the correct
algorithms can be applied.

So far we have considered only forward scattered waves and the results have been illustrated with broad-band time domain
seismograms. To obtain a better understanding of how the scattered fields depend upon frequency and also to expand the
spatial coverage to include back-scattered waves, it is convenient to consider scattering diagrams. The field U, from eq. (2.14)
can be represented in the form

U, = [U,(8)]F + [U,(8)]60 + [U.(0))F + [U.(6)] 6. (5.1)

Then, using eq. (2.14) and the definitions of the spherical vectors, we obtain the following expressions for the scattering
diagrams for the P and § fields

[U,(8)], = — 2 a2 + 1)e =2+ %@) Py(cos 6)
=0 '3
—itnra+ 1y 1(E) 9PLcos 8)
(U,(0))e = —go a®(21 + e~ 1>14§_T
[U,(8)], = [Z] BPUI( + 1)21 + 1)e 120+ DI @ P,(cos 8) (5.2)

() ) oFfcos 0

[U,(8)]g = 2 b(2l + 1)e U270
on 7 a6

=1
where we have assumed that the parameters

wr wr

=0 1= (5.3)
P s

are evaluated for any r > R.
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Figure 6(a). Scattering diagrams for various values of the parameter k,R = wR/V,,. In each panel the left-hand figure represents the scattered
P field, while the right-hand figure represents the scattered S field. The top two panels are for the case k,R = 0.5 and the bottom two panels are
for the case k,R = 1.0. The two panels on the left are for model 1 of a low-velocity inclusion, and the two panels on the right are for model 2 of
a high-velocity inclusion.

Scattering diagrams for six different ratios of R/A that range from less than 0.1 to greater than 3.0 and for both models are
shown in Fig. 6, where the radius of the observation point r is taken large enough that near-field terms are small and the
scattered P and S waves have their natural polarizations. A number of interesting results emerge from the study of these
figures. First, at low frequencies more of the incident P field is converted to scattered S fields than to scattered P fields, while at
high frequencies just the opposite occurs. Second, at low frequencies the portions of the incident field which are forward
scattered and back scattered are comparable, whereas at high frequencies most of the scattered field lies in the forward
direction. At the highest frequencies we approach the case of only generating a forward-scattered P field. Third, in terms of the
shapes and amplitudes of the scattering diagrams, there are only minor differences between the case of the low-velocity
inclusion and that of the high-velocity inclusion. This is consistent with the results shown in Figs 2-5, where the differences
between the low- and high-velocity case are most pronounced at small distances from the inclusion and tend to diminish at
larger distances. Obviously, the near-field parts of the solution are more sensitive to the sign of the velocity anomaly of the
inclusion than are the far field parts.

Finally, to obtain even more detailed information about the frequency dependence of the scattered fields, it is instructive
to consider the scattering cross-sections defined in Section 4. These scattering cross-sections are plotted for both the
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Figure 6(b). Similar to Fig. 6(a) except that the cases are for k,R =2 in the top two panels and for k,R =4 in the bottom two panels.

low-velocity inclusion and the high-velocity inclusion in Fig. 7. An interesting result shown here is that at low frequencies
(k,R <2) more energy is scattered into the § field than into the P field, with the ratio reaching a factor of 2 or more in some
ranges. At high frequencies (k,R greater than about 5), the scattered energy flux is primarily in the P field. In this range the
long large-amplitude oscillations are caused by interference between P,P, P, and P,P,P, waves. The short small-amplitude
oscillations that appear only for the case of the low-velocity sphere are caused by the focusing characteristic of a low-velocity
inhomogeneity, essentially the waves multiply reflected within the sphere that are evident in Fig. 5.

In both the scattering diagrams of Fig. 6 and the scattering cross-sections of Fig. 7, the amplitudes of the scattered fields
have been displayed, but information about their phases are not shown. It is important to remember that outside the sphere the
total solution consists of the sum of the incident field U, and the scattered field U,, and these two fields can add either
constructively or destructively. From a physical viewpoint it is clear that when the primary field U, interacts with the inclusion,
it loses that part of its energy which is converted to scattered waves and this causes a change in the primary field. Thus, the
additional field U, must include both this change in the primary field as well as the secondary scattered waves. For instance, in
the deep shadow where the total field is approximately zero, the field U, must have a value that is close to —U, in order to
compensate for the primary field. Consequently, in the scattering diagrams of Fig. 6 the forward scattered P field approaches a
value of 1 at high frequencies, but this is partly present in order to cancel the primary wave. In the case of the scattering cross
sections of Fig. 7 this same phenomenon causes the scattered P field to approach an asymptotic value of approximately 2 at
high frequencies. This follows from the fact that in this frequency range the scattered field consists of two basic terms, the
energy necessary to cancel the primary field in the shadow and the energy which is scattered by the sphere, and by
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Figure 6(c). Similar to Fig. 6(a) except that the cases are for k,R = 10 in the top two panels and for k,R =20 in the bottom two panels.

conservation of energy these two terms must be equal to each other and equal to the incident energy which is used to normalize
the cross-sections. It helps in understanding this phenomenon to consider the case of a perfectly absorbing sphere, in which
case there will not be any waves that are actually scattered, but the normalized scattering cross-sections will still have a value of
1.

6 CONCLUSIONS

The results presented in this paper can be used in a number of different ways. First, the complete and exact solution for the
scattering of an elastic P wave by a spherical inclusion is presented in a convenient form. The various terms of the solution can
be obtained either from the analytical solutions or a stable numerical procedure. Furthermore, a simple expression is developed
for estimating the number of terms required in the harmonic series solution. The results are appropriate for arbitrary
non-absorbing spherical inclusions, including fluids, and for all frequencies.

The numerical results calculated for the waves scattered from a spherical inclusion display a rich variety of interesting
phenomena, some of which were briefly investigated in this study. In addition to the wavelength of the incident wave, the
results depend critically upon the distance of the observation point from the scattering object. Within the shadow zone the
waves which dominate the solution near the scatterer are quite different from those that dominate at larger distances. The
solutions for low-velocity inclusions are quite different from those for high-velocity inclusions when near the scatterer, but
these differences diminish at larger distances. Also, the solutions demonstrate that an inclusion can be quite effective in
transforming incident P waves to scattered § waves, which may be important in the formation of seismic codas.
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The results presented in this paper should also be applicable, in at least an approximate manner, for problems involving
scattering from heterogeneities more complicated than a simple sphere. Scattering by a sphere serves as a canonical problem
for a general class of objects with relatively simple and smooth boundaries. It is expected that many of the scattering
phenomena associated with the spherical inclusion will also apply to this wider class of heterogeneities.

Finally, as mentioned in the introduction, the results of this study can serve as the starting point for an investigation of
various approximations that are typically made in the interpretation of scattered seismic waves. In assessing the validity of
these approximations it is important to make comparisons with the exact solutions.
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APPENDIX A. SPHERICAL VECTOR SYSTEM

The spherical vector system used in this paper and its application to the problems of elastodynamics were developed by G. L.
Petrashen. His original papers were published many years ago in Russian and are not readily available today. Thus we have
included a brief summary of the system and its main properties in this appendix. More information can be found in Petrashen
(1945, 1949) and Korneev & Petrashen (1987).

In a spherical coordinate system {r, 8, ¢} with unit vectors (E, @, ;f)) the spherical vectors are defined by the expressions
= Y0, (6, d) =t x VY, (6, $)
Y, =Y,,(6, ¢)=(+1)iY,.(6, d) —r VY,.(6, ¢) (A1)

Yim =Y0,(0, ¢) = &Y,,(6, $) +r VY,,(6, d)
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with the vsual spherical harmonics
Y,.(0, ) =e"?*P(cos §), 1=0, —l=m=l
where P}'(x) are the associated Legendre functions

dl+m (x2 _ 1)]

Pl x)y=(1- x2)n1/2 PR T’ (m=0)
Py = (—)r D iy <),
ey

In a spherical coordinate system these vectors have the components

v = 3Y,, - 1 4dY,, )
NPT sin § ¢
00 sin 8 J9¢

“~ 1 (9Y,,,,
+

09 sin @ d¢

Y, =(+1)Y,i—- ) (A2)

Y, =Y,k

In a Cartesian coordinate system the components are
1

Yo =5 Yy T+ m)(I =m + DY, R
i

_%[),I,m+1 (l+m)(l-m+l)Y,m ]]y+le Z
Y, = %[Ylﬂ,mﬂ —(—-m+ DY -m+2)Y,,,,, %

1 A
+Z[Y/+1,m+1 T(-—m+ DY -—m+2)Y,y p J§J+U-m+ 1Y, 2 (A3)

Yo=Yy —(+m)(+m=-1Y,_,,, K
1 . A
=5 St v Em) U+ m = 1Y, J§+ Hm)Y R,
The spherical vectors of the system in eq. (Al) are linearly independent at any point (6, ¢) on a spherical surface. In the
space of vector functions f(8, ¢) defined on a sphere Q
0=0=mr, 0=¢=<2n, dQ =sin8d0dd

the vectors satisfy the following orthogonality relation
JY*(v) va‘) do = [(V)] 25W1. i S, (A4)

where the normalizing coefficients are given by the expressions

o _\/721+l (I —m)!
“m = Nam(+ 1)+ m)!

+_\[1 (—m)! A5
“mE\ar 1)+ m)! (AS)
) U—m)!
Clm

aml (L +m)!

For vector functions f(8, ¢) with a finite norm
I lﬂdeEJ’ £ fdQ <>
Q Q

the system of spherical vectors in eq. (A1) is complete in the sense of convergence in the mean for a generalized Fourier series
expansion of f(8, ¢)

f(6,0)= i > apYe, 4) (A6)

v=0,+,— I=0m=—1/
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where

aly) = [V J YE - £dQ. (A7)
Q

If the class of functions (6, ¢) possesses continuous first derivatives with respect to 8 and ¢ on the sphere Q, then the series in
eq. (A6) convergences uniformly and also possesses first derivatives with respect to 6 and ¢ that agree with those of the
original function.

The main feature of the spherical vectors of eq. (Al) is contained in their complete utilization of central symmetry when
acted upon by any differential operator that is invariant to rotation. Consider an arbitrary differential operator L(r, 6, ¢) which
is invariant to rotation of the spherical coordinate system (r, 6, ). By invariant to rotation we mean that the operator L
commutes with any other operator R that represents a rotation in 3-D space. Then, for an arbitrary function ¢(r), possessing
sufficient derivatives, we have the equality
L(r, 6, $)[W(NY5)(6, )] = MEW(NIYL(6, ), v=(0,+, ~) (A8)
where M{¥)(r) is an operator that acts on the radial function ¢(r) only. This property together with the orthogonality relation
in eq. (A4) means that for a differential equation of the form
L(r,6,¢)U=0

substituting an expansion of the form

U= > yelr)YaX, ¢)

v,i,m

converts the original system into a set of independent equations
M(V) (V)(r) 0

that only involve the radial functions ¥, (r).
In many practical applications, it is necessary to know how the vector

Uy = Gin(r) Yo + 0 () Y i + 451 Y i, (A9)
responds to the following differential operators:
I+
L T [ A R et 7 | LR} (A10
-1 I+
VxU[m:[lp;n,r_(—r_)¢lm ‘//lmrﬂg‘—)d,[m:l ?m(el d))
0 _l_ o ] _ [+1 0 -
21 +1 l:ll’lm r r lA[]lm Y[m(e d’) 20 + 1 [ltblm r r l[’lm:‘Ylnl(g’ ¢) (Al 1)
2 [+ 1)1 +2
V20, =+ (w3, + 2, - A w,m)
r r?

_@-n (-1 1+1 Y (6,
21+3 (+2
+la+ 1)(1//;,,,,, ( )w,m, Cy;.)
2 W=\ Y6 4)
+ l(d’lm,rr + ; l/’lm,r - r2 l/’lm):l 21 + 1 . (Alz)

2 I+ 1
Al)lm = V2‘-Jlm - V X V X Ulm = ['Il(l)m,rr + ; d"l’m r ( ) ‘ﬁblm] (l)m(el d))

2 I+ +2
R w;n]Y,:,(e, #)
r r
2 (- 1
i+ 20, - 0 Va6, 00 (A13)

Finally we note that in the case of boundary conditions with cylindrical symmetry, it is convenient to use a cylindrical
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vector system

Yo =Y, 3

Y. =Y,p—iY,é (A14)
Y. =Y, p+iY, ¢

where Y,, = e” and (p, ¢, 2) are unit vectors of a cylindrical coordinate system (p, ¢, z). For the case of cylindrical symmetry
the vector system of eq. (A14) possesses the main features of the system of spherical vectors of eq. (Al).

APPENDIX B
The analytical solutions for the unknown coefficients in eq. (2.20) are
A(V) A;)V)

’ b(V): »
A ! A

alV = (v=1,2) (B1)

where

m §§ {h/(fz) hi(n)

Il(fl)]/("h)
41 QI+ DA +——

& kPl i kil

A=

QL+UA4p)2

h1(§2)jl(771)A +f1(§1)h1(772)A ]
& L 2 & M2 A

= q A [Ay + (L + 2 (E)hye(02) + (U= Dby (E)h1(n2)]

—m+n&[
[

+ ‘I%Az[Al + (2 (m) + U= Dy 1 (£ ()] + @ = DU +2) 4, Az}- (B2)

AyquQE%EQ[( o U+2xm+1m)”“hx+uu+2m-4»1&no]

Jny)

1

Mn:_mﬂ@%k”(1—?—u+axy+1)>M§)+U+Dw/Kﬁﬂ

2

)] (24 10209 g | (83)

Ji(€1)

eh e (M5 6] (B4)

jl(‘fl)jl(nl)&
& M op2

]1(§ )

AR = imdji (€1 (na(1 = (= 1)+ 2)g) - (1-2-a+2@+1a)

(e 2 g 10 -0+ 200 ~1-22) o () ER g (@ -+ 20 11 -2 (B5)
P2 p

2
The following relation exists between the terms in egs (B3)-(BS5).
AP =i 9m (AL ADT).

An expression for A?) can be derived from eq. (B2) by substituting for functions #,(£,) (k =1—1,1,1+1) the corresponding
functions —j, (£,). The following quantities were used in eqs (B2)-(BS5)

Ay =+ Djra(E)i- () + b (§0)i (1)

Ay =1+ Dhyy(E)h—y(n2) + -1 (E2)hy41(n2)

A=+ s (E)ho(m2) + i (EDR s (n2) (B6)
Ay = (I + DAy i (61 (m) + Ty 1 (£2))01 (M)

_2 Pl"lg _2 H
g=—=\1-—=)=>({1-—}
N2 P2 72 M2

For the case of a fluid within the sphere, the above equations can still be used provided the following substitutions are
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made:

iy =0, Jim(m) =1, Jim) =-1, Jm) =0.

' . i
A= §2{(21+1) (&) 1(772)(]1+1(f1)—_h(§1))
Plll(fl)
- @) 2 ) (8~ )

2
(!1+1(§ )— 1;(§ ))[Az + (L + 2k (E)hy () + (- Dl (£2)h,1(n2)]

+n£& (2160 =20 #2510+ 2) 8ot ~ i) )|

2P2

Ay:ing{h,(w%[az—nff,—"z)—hmm»]}

2
AP =0.

J:(f ) <(,2 DI +2)g-1-1 _E'l>}'

2

8P = ~2imfji ()0 - (- D@+ D) + 122

An expression for A{? can be derived from the one for A in the same way as for the elastic case.

(B7)

(B8)

(B9
(B10)

(B11)





